International Journal of Humanities Science Innovations and Management Studies
E-ISSN: 3050 - 8509 P-ISSN: 3050 - 8495

Open Access | Research Article | Volume 1 Issue 1 | Download Full Text

A Review on Model-Driven Development with a Focus on Microsoft PowerApps

Authors: Aniruddha Arjun Singh Singh, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, Vetrivelan Tamilmani, Vaibhav Maniar
Year of Publication : 2024
DOI: 10.64137/30508509/IJHSIMS-V1I1P105
Paper ID: IJHSIMS-V1I1P105


How to Cite:
Aniruddha Arjun Singh Singh, Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, Vetrivelan Tamilmani, Vaibhav Maniar, "A Review on Model-Driven Development with a Focus on Microsoft PowerApps" International Journal of Humanities Science Innovations and Management Studies, Vol. 1, No. 1, pp. 43-56, 2024.

Abstract:
The paradigm shifts in software engineering that Model-Driven Development (MDD) and low-code/no-code (LCNC) systems, including Microsoft PowerApps, offer is a focus on high-level models in the form of visual development environments instead of code-centric development models. MDD is concerned with the development of abstract models of system behavior, structure and logic to be converted into executable applications using automated tools. Research-based MDD techniques investigate frameworks, application domain languages, and formal methodologies, and commercial tools, such as Mendix, IBM Rational Rhapsody, and PowerApps, offer viable application development platforms. Low-code platforms go further to allow citizen developers and professional programmers to create applications using visual interfaces with limited code. Although they have their benefits, such as enhanced abstraction, productivity, reusability, and platform insensitivity, such things as tool dependency, performance constraints, complexity in debugging, constraints in delegation, and long-term maintainability remain. Effective data management, integration with diverse sources, and attention to both developer and user experience are critical for successful adoption and the development of scalable, enterprise-grade applications. Future trends indicate the growing adoption of AI-assisted model-driven tools, automated testing, and enhanced integration with DevOps pipelines, which further accelerate software development and innovation. Understanding both the technical and organizational implications of MDD and low-code platforms is essential for maximizing their benefits in real-world enterprise environments.

Keywords: Software Engineering, Developer Experience Low-Code / No-Code (LCNC) Platforms, Model-Driven Development, Microsoft PowerApps.

References:
[1] M. Staron, Model Driven Engineering Languages and Systems, vol. 4199. in Lecture Notes in Computer Science, vol. 4199. Berlin, Heidelberg, Heidelberg: Springer Berlin Heidelberg, 2006. doi: 10.1007/11880240.
[2] L. García-Borgoñón, M. A. Barcelona, J. A. García-García, M. Alba, and M. J. Escalona, “Software process modeling languages: A systematic literature review,” Inf. Softw. Technol., vol. 56, no. 2, pp. 103–116, Feb. 2014, doi: 10.1016/j.infsof.2013.10.001.
[3] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of model-driven software development,” IEEE Softw., vol. 20, no. 5, pp. 42–45, 2003, doi: 10.1109/MS.2003.1231150.
[4] K. Falkner, C. Szabo, R. Vivian, and N. Falkner, “Evolution of Software Development Strategies,” Proc. - Int. Conf. Softw. Eng., vol. 2, pp. 243–252, 2015, doi: 10.1109/ICSE.2015.153.
[5] J. P. Tolvanen and S. Kelly, “Model-driven development challenges and solutions: Experiences with domain-specific modelling in industry,” Model. 2016 - Proc. 4th Int. Conf. Model. Eng. Softw. Dev., no. Modelsward, pp. 711–719, 2016, doi: 10.5220/0005833207110719.
[6] E. Yigitbas, I. Jovanovikj, K. Biermeier, S. Sauer, and G. Engels, “Integrated model-driven development of self-adaptive user interfaces,” Softw. Syst. Model., vol. 19, no. 5, pp. 1057–1081, Sep. 2020, doi: 10.1007/s10270-020-00777-7.
[7] R. Waszkowski, “Low-code platform for automating business processes in manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 376–381, 2019, doi: 10.1016/j.ifacol.2019.10.060.
[8] A. N. Alonso et al., “Building a Polyglot Data Access Layer for a Low-Code Application Development Platform,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12135 LNCS, no. 2, 2020, pp. 95–103. doi: 10.1007/978-3-030-50323-9_6.
[9] A. U. Alrubaee, D. Cetinkaya, G. Liebchen, and H. Dogan, “A Process Model for Component-Based Model-Driven Software Development,” Information, vol. 11, no. 6, p. 302, Jun. 2020, doi: 10.3390/info11060302.
[10] A. Rodrigues da Silva, “Model-driven engineering: A survey supported by the unified conceptual model,” Comput. Lang. Syst. Struct., vol. 43, pp. 139–155, Oct. 2015, doi: 10.1016/j.cl.2015.06.001.
[11] M. Franzago, I. Malavolta, and H. Muccini, “Stakeholders, Viewpoints and Languages of a Modelling Framework for the Design and Development of Data-Intensive Mobile Apps,” 2015.
[12] G. Taentzer and S. Vaupel, “Model-Driven Development of Mobile Applications: Towards Context-Aware Apps of High Quality,” CEUR Workshop Proc., vol. 1591, pp. 17–29, 2016.
[13] M. Brambilla, E. Umuhoza, and R. Acerbis, “Model-driven development of user interfaces for IoT systems via domain-specific components and patterns,” J. Internet Serv. Appl., vol. 8, no. 1, p. 14, Dec. 2017, doi: 10.1186/s13174-017-0064-1.
[14] M. Woo, “The Rise of No/Low Code Software Development—No Experience Needed?,” Engineering, vol. 6, no. 9, pp. 960–961, Sep. 2020, doi: 10.1016/j.eng.2020.07.007.
[15] H. P. Kapadia, “Cross-Platform UI/UX Adaptions Engine for Hybrid Mobile Apps,” Int. J. Nov. Res. Dev., vol. 5, no. 9, pp. 30–37, 2020.
[16] P. Tchounikine, “Designing for Appropriation: A Theoretical Account,” Human–Computer Interact., vol. 32, no. 4, pp. 155–195, Jul. 2017, doi: 10.1080/07370024.2016.1203263.
[17] D. Graziotin, X. Wang, and P. Abrahamsson, “Happy software developers solve problems better: psychological measurements in empirical software engineering,” PeerJ, vol. 2, Mar. 2014, doi: 10.7717/peerj.289.
[18] A. Fontão, O. M. Ekwoge, R. Santos, and A. C. Dias-Neto, “Facing up the primary emotions in Mobile Software Ecosystems from Developer Experience,” in Proceedings of the 2nd Workshop on Social, Human, and Economic Aspects of Software, in WASHES ’17. New York, NY, USA, NY, USA: ACM, May 2017, pp. 5–11. doi: 10.1145/3098322.3098325.
[19] S. S. S. Neeli, “Real-Time Data Management with In-Memory Databases: A Performance-Centric Approach,” J. Adv. Dev. Res., vol. 11, no. 2, 2020.
[20] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-Driven Evolutionary Optimization: An Overview and Case Studies,” IEEE Trans. Evol. Comput., 2019, doi: 10.1109/TEVC.2018.2869001.
[21] G. Fusco and L. Aversano, “An approach for semantic integration of heterogeneous data sources,” PeerJ Comput. Sci., vol. 6, Mar. 2020, doi: 10.7717/peerj-cs.254.
[22] S. S. S. Neeli, “Serverless Databases: A Cost-Effective and Scalable Solution,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, p. 7, 2019.
[23] T. Logan, T. Williams, A. Nisbet, K. Liberman, C. Zuo, and S. Guikema, “Evaluating urban accessibility: leveraging open-source data and analytics to overcome existing limitations,” Environ. Plan. B Urban Anal. City Sci., vol. 46, no. 5, pp. 897–913, Jun. 2019, doi: 10.1177/2399808317736528.
[24] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the understanding and comparison of low-code development platforms,” in 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), IEEE, Aug. 2020, pp. 171–178. doi: 10.1109/SEAA51224.2020.00036.
[25] B. Liu, T. Glock, V. P. Betancourt, M. Kern, E. Sax, and J. Becker, “Model Driven Development Process for a Service-oriented Industry 4.0 System,” in 2020 9th International Conference on Industrial Technology and Management (ICITM), 2020, pp. 78–83. doi: 10.1109/ICITM48982.2020.9080344.
[26] J. Hou, Y. Zhang, and A. D. Rana, “Describing Approach for Model-Driven Collaborative Application Development,” in 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), 2019, pp. 336–343. doi: 10.1109/AIAM48774.2019.00073.
[27] C. M. Sosa-Reyna, E. Tello-Leal, and D. Lara-Alabazares, “An Approach Based on Model-Driven Development for IoT Applications,” in 2018 IEEE International Congress on Internet of Things (ICIOT), 2018, pp. 134–139. doi: 10.1109/ICIOT.2018.00026.
[28] F. Tanaka, K. Hisazumi, S. Ishida, and A. Fukuda, “A methodology to develop energy adaptive software using model-driven development,” in TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 769–774. doi: 10.1109/TENCON.2017.8227963.
[29] W. Chansuwath and T. Senivongse, “A model-driven development of web applications using AngularJS framework,” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 2016, pp. 1–6. doi: 10.1109/ICIS.2016.7550838.
[30] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.
[31] Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.
[32] Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.
[33] Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.
[34] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.
[35] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.
[36] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.
[37] Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.
[38] Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.
[39] Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
[40] Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis With Social Media Data For Enhanced Marketing Insights. Available at SSRN 5266555.
[41] Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING AI-BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA DATA FOR ENHANCED MARKETING INSIGHTS. Journal Homepage: http://www. ijesm. co. in, 10(2).
[42] Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.
[43] Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.
[44] Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.
[45] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
[46] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
[47] Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).
[48] Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.
[49] Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
[50] Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).
[51] Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.
[52] Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.
[53] Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.
[54] Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
[55] Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
[56] Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., & Gangineni, V. N. (2023). Scalable Deep Learning Algorithms with Big Data for Predictive Maintenance in Industrial IoT. International Journal of AI, BigData, Computational and Management Studies, 4(1), 88-97.
[57] Chalasani, R., Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., & Bhumireddy, J. R. (2023). Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity. International Journal of AI, BigData, Computational and Management Studies, 4(3), 50-60.
[58] Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2023). A Review of Machine Learning Techniques for Financial Stress Testing: Emerging Trends, Tools, and Challenges. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 40-50.
[59] Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2023). A Survey on Regulatory Compliance and AI-Based Risk Management in Financial Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 46-53.
[60] Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Kamarthapu, B., Polam, R. M., & Penmetsa, M. (2023). Predictive Machine Learning Models for Financial Fraud Detection Leveraging Big Data Analysis. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 34-43.
[61] Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Tyagadurgam, M. S. V. (2023). AI-Enabled Big Data Analytics for Climate Change Prediction and Environmental Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 71-79.
[62] Polam, R. M. (2023). Predictive Machine Learning Strategies and Clinical Diagnosis for Prognosis in Healthcare: Insights from MIMIC-III Dataset. Available at SSRN 5495028.
[63] Narra, B., Gupta, A., Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., & Patchipulusu, H. (2023). Predictive Analytics in E-Commerce: Effective Business Analysis through Machine Learning. Available at SSRN 5315532.
[64] Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2023). Advanced Edge Computing Frameworks for Optimizing Data Processing and Latency in IoT Networks. JOETSR-Journal of Emerging Trends in Scientific Research, 1(1).
[65] Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., & Buddula, D. V. K. R. (2023). Opportunities and Limitations of Using Artificial Intelligence to Personalize E-Learning Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(1), 128-136.
[66] Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.
[67] Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG data analysis for stress detection using k-nearest neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.
[68] KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
[69] Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's disease with prediction: A novel SVM approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
[70] Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
[71] Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
[72] Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
[73] Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
[74] Madhura, R., Krutthika Hirebasur Krishnappa. et al., (2023). Slack time analysis for APB timer using Genus synthesis tool. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 207–217. https://doi.org/10.1007/978-981-99-4932-8_20
[75] Shashidhar, R., Aditya, V., Srihari, S., Subhash, M. H., & Krishnappa, K. H. (2023). Empowering investors: Insights from sentiment analysis, FFT, and regression in Indian stock markets. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 01–06. https://doi.org/10.1109/AIKIIE60097.2023.10390502
[76] Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa. Predictive models for early detection of chronic diseases in elderly populations: A machine learning perspective. Int J Comput Artif Intell 2023;4(1):71-79. DOI: 10.33545/27076571.2023.v4.i1a.169

2024 © Scholastic Research Publication. All Rights Reserved. Designed by IJHSIMS